746 research outputs found

    Trajectory and smooth attractors for Cahn-Hilliard equations with inertial term

    Get PDF
    The paper is devoted to a modification of the classical Cahn-Hilliard equation proposed by some physicists. This modification is obtained by adding the second time derivative of the order parameter multiplied by an inertial coefficient which is usually small in comparison to the other physical constants. The main feature of this equation is the fact that even a globally bounded nonlinearity is "supercritical" in the case of two and three space dimensions. Thus the standard methods used for studying semilinear hyperbolic equations are not very effective in the present case. Nevertheless, we have recently proven the global existence and dissipativity of strong solutions in the 2D case (with a cubic controlled growth nonlinearity) and for the 3D case with small inertial coefficient and arbitrary growth rate of the nonlinearity. The present contribution studies the long-time behavior of rather weak (energy) solutions of that equation and it is a natural complement of the results of our previous papers. Namely, we prove here that the attractors for energy and strong solutions coincide for both the cases mentioned above. Thus, the energy solutions are asymptotically smooth. In addition, we show that the non-smooth part of any energy solution decays exponentially in time and deduce that the (smooth) exponential attractor for the strong solutions constructed previously is simultaneously the exponential attractor for the energy solutions as well

    Oxidation States, Thouless' Pumps, and Nontrivial Ionic Transport in Nonstoichiometric Electrolytes

    Get PDF
    Thouless' quantization of adiabatic particle transport permits one to associate an integer topological charge with each atom of an electronically gapped material. If these charges are additive and independent of atomic positions, they provide a rigorous definition of atomic oxidation states and atoms can be identified as integer-charge carriers in ionic conductors. Whenever these conditions are met, charge transport is necessarily convective; i.e., it cannot occur without substantial ionic flow, a transport regime that we dub trivial. We show that the topological requirements that allow these conditions to be broken are the same that would determine a Thouless' pump mechanism if the system were subject to a suitably defined time-periodic Hamiltonian. The occurrence of these requirements determines a nontrivial transport regime whereby charge can flow without any ionic convection, even in electronic insulators. These results are first demonstrated with a couple of simple molecular models that display a quantum-pump mechanism upon introduction of a fictitious time dependence of the atomic positions along a closed loop in configuration space. We finally examine the impact of our findings on the transport properties of nonstoichiometric alkali-halide melts, where the same topological conditions that would induce a quantum-pump mechanism along certain closed loops in configuration space also determine a nontrivial transport regime such that most of the total charge current results to be uncorrelated from the ionic ones

    TOPOLOGY IN COLORED TENSOR MODELS

    Get PDF
    From a “geometric topology” point of view, the theory of manifold representation by means of edge-colored graphs has been deeply studied since 1975 and many results have been achieved: its great advantage is the possibility of encoding, in any dimension, every PL d-manifold by means of a totally combinatorial tool. Edge-colored graphs also play an important rôle within colored tensor models theory, considered as a possible approach to the study of Quantum Gravity: the key tool is the G-degree of the involved graphs, which drives the 1/N expansion in the higher dimensional tensor models context, exactly as it happens for the genus of surfaces in the two-dimensional matrix model setting. Therefore, topological and geometrical properties of the represented PL manifolds, with respect to the G-degree, have specific relevance in the tensor models framework, show- ing a direct fruitful interaction between tensor models and discrete geometry, via edge-colored graphs. In colored tensor models, manifolds and pseudomanifolds are (almost) on the same footing, since they constitute the class of polyhedra represented by edge-colored Feynman graphs arising in this context; thus, a promising research trend is to look for classification results concerning all pseudomanifolds - or, at least, singular d-manifolds, if d ≥ 4 - represented by graphs of a given G-degree. In dimension 4, the existence of colored graphs encoding different PL manifolds with the same underlying TOP manifold, suggests also to investigate the ability of ten- sor models to accurately reflect geometric degrees of freedom of Quantum Gravity

    Granular Rheology in Zero Gravity

    Full text link
    We present an experimental investigation on the rheological behavior of model granular media made of nearly elastic spherical particles. The experiments are performed in a cylindrical Couette geometry and the experimental device is placed inside an airplane undergoing parabolic flights to cancel the effect of gravity. The corresponding curves, shear stress versus shear rate, are presented and a comparison with existing theories is proposed. The quadratic dependence on the shear rate is clearly shown and the behavior as a function of the solid volume fraction of particles exhibits a power law function. It is shown that theoretical predictions overestimate the experiments. We observe, at intermediate volume fractions, the formation of rings of particles regularly spaced along the height of the cell. The differences observed between experimental results and theoretical predictions are discussed and related to the structures formed in the granular medium submitted to the external shear.Comment: 10 pages, 6 figures to be published in Journal of Physics : Condensed Matte

    Stripes ordering in self-stratification experiments of binary and ternary granular mixtures

    Full text link
    The self-stratification of binary and ternary granular mixtures has been experimentally investigated. Ternary mixtures lead to a particular ordering of the strates which was not accounted for in former explanations. Bouncing grains are found to have an important effect on strate formation. A complementary mechanism for self-stratification of binary and ternary granular mixtures is proposed.Comment: 4 pages, 5 figures. submitted for pubication, guess wher

    On the characterisation of paired monotone metrics

    Get PDF
    Hasegawa and Petz introduced the notion of dual statistically monotone metrics. They also gave a characterisation theorem showing that Wigner-Yanase-Dyson metrics are the only members of the dual family. In this paper we show that the characterisation theorem holds true under more general hypotheses.Comment: 12 pages, to appear on Ann. Inst. Stat. Math.; v2: changes made to conform to accepted version, title changed as wel

    Parabolic Perturbation of a Nonlinear Hyperbolic Problem Arising in Physiology

    Get PDF
    AbstractWe study a transport-diffusion initial value problem where the diffusion codlicient is "small" and the transport coefficient is a time function depending on the solution in a nonlinear and nonlocal way. We show the existence and the uniqueness of a weak solution of this problem. Moreover we discuss its asymptotic behaviour as the diffusion coefficient goes to zero, obtaining a well-posed first-order nonlinear hyperbolic problem. These problems arise from mathematical models of muscle contraction in the framework of the sliding filament theory

    Granular Elasticity without the Coulomb Condition

    Full text link
    An self-contained elastic theory is derived which accounts both for mechanical yield and shear-induced volume dilatancy. Its two essential ingredients are thermodynamic instability and the dependence of the elastic moduli on compression.Comment: 4pages, 2 figure

    Computing Matveev's complexity via crystallization theory: the boundary case

    Get PDF
    The notion of Gem-Matveev complexity has been introduced within crystallization theory, as a combinatorial method to estimate Matveev's complexity of closed 3-manifolds; it yielded upper bounds for interesting classes of such manifolds. In this paper we extend the definition to the case of non-empty boundary and prove that for each compact irreducible and boundary-irreducible 3-manifold it coincides with the modified Heegaard complexity introduced by Cattabriga, Mulazzani and Vesnin. Moreover, via Gem-Matveev complexity, we obtain an estimation of Matveev's complexity for all Seifert 3-manifolds with base D2\mathbb D^2 and two exceptional fibers and, therefore, for all torus knot complements.Comment: 27 pages, 14 figure

    Longtime behavior of nonlocal Cahn-Hilliard equations

    Full text link
    Here we consider the nonlocal Cahn-Hilliard equation with constant mobility in a bounded domain. We prove that the associated dynamical system has an exponential attractor, provided that the potential is regular. In order to do that a crucial step is showing the eventual boundedness of the order parameter uniformly with respect to the initial datum. This is obtained through an Alikakos-Moser type argument. We establish a similar result for the viscous nonlocal Cahn-Hilliard equation with singular (e.g., logarithmic) potential. In this case the validity of the so-called separation property is crucial. We also discuss the convergence of a solution to a single stationary state. The separation property in the nonviscous case is known to hold when the mobility degenerates at the pure phases in a proper way and the potential is of logarithmic type. Thus, the existence of an exponential attractor can be proven in this case as well
    • …
    corecore